Prof. Enrique Mateus Nieves.
Doctorando en Educación matemática.

Ejercicios Descomposición en Fracciones parciales.

1) \(\frac{8x-1}{(x-2)(x+3)} \)
2) \(\frac{x-29}{(x-4)(x+1)} \)
3) \(\frac{x+34}{x^2 - 4x - 12} \)
4) \(\frac{5x-12}{x^2 - 4x} \)
5) \(\frac{4x^2 - 15x - 1}{(x-1)(x+2)(x-3)} \)
6) \(\frac{x^2 + 19x + 20}{x(x+2)(x-5)} \)
7) \(\frac{4x^2 - 5x - 15}{x^2 - 4x^2 - 5x} \)
8) \(\frac{37 - 11}{(x+1)(x^2 - 5x + 6)} \)

Descomposición en fracciones parciales con un factor lineal repetido

9) \(\frac{2x+3}{(x-1)^2} \)
10) \(\frac{5x^2 - 4}{x^2(x+2)} \)
11) \(\frac{19x^2 + 50x - 25}{3x^3 - 5x^2} \)
12) \(\frac{10 - x}{x^2 + 10x + 25} \)
13) \(\frac{x^2 - 6}{(x+2)(2x-1)} \)
14) \(\frac{2x^2 + x}{(x-1)^2(x+1)^2} \)

Descomposición de una fracción parcial que contiene un factor cuadrático irredible.

1. Descomponga en fracciones parciales:

 a) \(\frac{x+2}{x^3} \)
 R: \(\frac{2}{x^3} + \frac{1}{x^2} \)

 b) \(\frac{x^2 + 3x - 4}{x^2 - 2x - 8} \)
 R: \(\frac{1}{x+2} + \frac{4}{x-4} \)

 c) \(\frac{x^4 - 2x^3 + 3x^2 - x + 3}{x^3 - 2x^2 + 3x} \)
 R: \(\frac{x}{x} - \frac{x-1}{x^2 - 2x + 3} \)

 d) \(\frac{1}{x^3 + x} \)
 R: \(\frac{1}{x} - \frac{x}{x^2 + 1} \)

 e) \(\frac{x-5}{(x^2 - 25)(x-2)(x+5)} \)
 R: \(-\frac{1}{7(x+5)^2} - \frac{1}{49(x+5)} + \frac{1}{49(x-2)} \)
Prof. Enrique Mateus Nieves.
Doctorando en Educación matemática.

f) \[
\frac{x^3}{x^3 - 64}
\]
R: \[
1 + \frac{4}{3(x - 4)} - \frac{4}{3} \frac{x + 8}{x^2 + 4x + 16}
\]

g) \[
\frac{1}{(x + 2)^3}
\]
R: \[
\frac{1}{(x + 2)^3}
\]

h) \[
\frac{3x^2 - 16}{x^2 - 4x}
\]
R: \[
3 + \frac{4}{x} + \frac{8}{x - 4}
\]

i) \[
\frac{x^5 - 1}{x^4 - 1}
\]
R: \[
x + \frac{1}{2(x + 1)} - \frac{1}{2} \frac{x - 1}{x^2 + 1}
\]

j) \[
\frac{1 - x^2}{(x + 1)(x - 3)^2 (2x + 1)}
\]
R: \[
\frac{6}{49(2x + 1)} - \frac{2}{7(x - 3)^2} - \frac{3}{49(x - 3)}
\]

k) \[
\frac{x^2 - 1}{(x^2 + 1)^2}
\]
R: \[
x^2 - 3 \frac{2}{(1 + x^2)^2} + \frac{5}{1 + x^2}
\]