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In this paper I will explain what I mean by an ‘embodied
approach’ to mathematics. I shall contrast and compare it with two
other modes: the ‘proceptual’ (manipulating symbols as process
and concept) and the ‘axiomatic’ based on formal definitions and
formal proof. Each of these has its own standard of ‘truth’. I argue
that the embodied mode, though it lacks mathematical proof when
used alone, can provide a fundamental human basis for meaning in
mathematics. I shall give examples of an embodied approach in
mathematics, particularly in the calculus,  using technology that
makes explicit use of a visual and enactive interface.

PHYSICAL AND MENTAL TOOLS FOR THINKING

In his work over thirty years ago, long before the development of modern
computers, Bruner (1966) focused on homo sapiens as a tool-using species.

Man’s use of mind is dependent upon his ability to develop and use “tools” or
“instruments” or “technologies” that make it possible to express and amplify
his powers. His very evolution as a species speaks to this point. It was
consequent upon the development of bipedalism and the use of spontaneous
pebble tools that man’s brain and particularly his cortex developed. It was not
a large-brained hominid that developed the technical-social life of the human;
rather it was the tool-using, cooperative pattern that gradually changed man’s
morphology by favoring the survival of those who could link themselves with
tool systems and disfavoring those who tried to do it on big jaws, heavy
dentition, or superior weight. What evolved as a human nervous system was
something, then, that required outside devices for expressing its potential.

(Bruner, Education as Social Invention, 1966, p. 25.)

In his essay “Patterns of Growth”, Bruner (1966) distinguished three modes of
mental representation – the sensori-motor, the iconic and the symbolic.

What does it mean to translate experience into a model of the world. Let me
suggest there are probably three ways in which human beings accomplish this
feat. The first is through action. […] There is a second system of
representation that depends upon visual or other sensory organization and
upon the use of summarizing images. […] We have come to talk about the
first form of representation as enactive, the second is iconic. […]  Finally,
there is a representation in words or language. Its hallmark is that it is
symbolic in nature. Bruner, 1966, pp. 10–11.
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Figure 1: Bruner’s three modes of representation

Bruner considered that these representations grow in sequence in the cognitive
growth of the individual, first enactive, then iconic and finally the capacity for
symbolic representation. He hypothesised that “any idea or problem or body of
knowledge can be presented in a form simple enough so that any particular
learner can understand it in recognizable form” (ibid. p. 44).

The development of modern computer interfaces show something of
Bruner’s philosophy in the underlying use of:

• Enactive interface,

• Icons as summarizing images to represent selectable options,

• Symbolism through keyboard input and internal processing.

When representations in mathematics are considered, clearly the single category
of ‘symbolism’—including both language and mathematical symbols—requires
subdivision. Bruner (1966, pp. 18, 19) hinted at such a formulation in saying
that that symbolism includes both “language in its natural form” and the two
“artificial languages of number and logic.” To these categories we must add not
just number, but algebraic and other functional symbolism (e.g. trigonometric,
exponential, logarithmic) and the wider symbolism of axiomatic mathematics.

The Reform movement in the calculus—for example the Harvard
Calculus—focused initially on three representations: graphic, numeric and
symbolic (or analytic):

One of the guiding principles is the ‘Rule of Three,’ which says that wherever
possible topics should be taught graphically and numerically, as well as
analytically. The aim is to produce a course where the three points of view are
balanced, and where students see each major idea from several angles.

(Hughes Hallett 1991, p. 121)
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The ‘Rule of Three’ later became the ‘Rule of Four’, extending the
representations to include the verbal, giving four basic modes:

• verbal,

• graphic,

• numeric,

• symbolic (or analytic).

Several points are interesting here:

i) The enactive mode is completely omitted,

ii) The “verbal” mode was not seen initially as being important,

iii) Formal-axiomatic formulation using logical deduction is absent.

Each of these aspects is significant. The omission of the enactive mode is
presumably because it does not seem to be a central focus in the graphs and
symbols of the calculus. As I found with my earlier work on Graphic Calculus
(1985a), this omission is a serious one because the embodied aspects of the
calculus help to give fundamental human meaning. The initial omission of the
verbal category is interesting. My interpretation is that this is because the verbal
category is a fundamental ingredient underpinning all the other modes of
operation. It can be highlighted, as it is in the Harvard Calculus, but it is
essentially ever-present. Finally the down-playing of formal considerations is an
implicit admission that there is something essentially difficult about this mode
of operation that is not part of the calculus and more appropriately postponed
for a formal course in analysis.

Taking these observations into account, I decided to categorise the modes of
representation into three fundamentally distinct ways of operation:

• Embodied: based on human perceptions and actions in a real-world
context including but not limited to enactive and visual aspects.

• Symbolic-proceptual: combining the role of symbols in arithmetic,
algebra and symbolic calculus, based on the theory of these symbols
acting dually as both process and concept (procept). (See Tall et al,
2001).

• Formal-axiomatic: a formal approach starting from selected axioms
and making logical deductions to prove theorems. (Figure 2.)

My solution involves making choices, but I hope to show that the choices made
can be justified by the fact that each category operates in a distinct manner, each
with its own world of meaning and distinct methods of justification.

The embodied world is the fundamental human mode of operation based on
perception and action. The symbolic-proceptual  world is a world of
mathematical symbol-processing, and the formal-axiomatic world involves the
further shift into formalism that proves so difficult for many of our students.
Language operates throughout all three modes, enabling increasingly rich and
sophisticated conceptions to be developed in each of them.
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In using the term ‘embodied’, I am highly aware of the growing theories of
‘embodied cognition’ in cognitive science in the last two decades. In
mathematics, a major contribution has been made by Lakoff and his colleagues.
(Lakoff and Johnson, 1999, Lakoff and Nunez, 2000, Nunez et al 1999.)
Embodied cognition focuses on the bodily/biological mechanisms underlying

cognition and my  work lies squarely in this broad scheme of ideas. However, Lakoff

uses terms in a different way by asserting that all mathematics is embodied, meaning

that it depends on constructions in human minds and shared meanings in

mathematical cultures. I agree with this position. However, it reduces the power of

the word ‘embodied’ because it refers to all mathematical thinking. I prefer to use the

term ‘embodied’ to refer to thought built fundamentally on sensory perception as

opposed to symbolic operation and logical deduction. This gives the term ‘embodied’

a more focused meaning in mathematical thinking.

Each world of operation incorporates a range of different aspects. The
embodied mode includes enactive and iconic, and encompasses an increasingly
subtle use of visual and spatial imagery. The proceptual mode contains several
distinct stages (see Tall et al 2001). These include arithmetic calculations,
algebraic manipulations and the potentially infinite notion of the limit concept
with significant cognitive reconstructions necessary to cope with each
successively sophisticated topic. The formal mode begins with an initial
deductive stage based on embodied experience (for instance in Euclidean
geometry) prior to building a full-blown systematic axiomatic theory.
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Figure 2: Three representational worlds and their links with other viewpoints
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Relationships with other theories

The subdivision into these three worlds of operation has links with a number of
other theories. Piaget’s stage theory incorporating

sensori-motor / preconceptual / concrete operational / formal

has a similar structure, though his theory is primarily developmental in origin.
The SOLO taxonomy (Structure of Observed Learning Outcomes) of Biggs

and Collis (1982) formulated a subtly different view incorporating Bruner’s
ideas in terms of the following successive modes of operation:

sensori-motor / ikonic / concrete operational / formal / post-formal.

The SOLO taxonomy differs from that of Piaget, in that it is intended in to
provide a template for assessment. Within each mode, the development of a
specific concept is assessed as to whether the student’s response is:

• pre-structural (lacking knowledge of the assessed component)

• unistructural (focusing on a single aspect)

• multi-structural (focussing on several separate aspects)

• relational (relating different aspects together)

• extended abstract (seeing the concept from an overall viewpoint).

Each mode, therefore, is not a single level of cognitive operation. It grows
within the individual and, as each successive mode comes on stream
sequentially in cognitive development, earlier modes continue to be available.

At a time when a student is learning mathematics, the sensori-motor and
ikonic modes will already be available together and I have essentially combined
them to give the embodied mode. Formal aspects of thinking in mathematics I
have combined into the formal-axiomatic mode. This begins with local
deduction (meaning ‘if I know something … then I can deduce something else’)
and develops into global systems of axioms and formal proof.

Why Three Worlds of Operation?

The highly complex thinking processes in mathematics can be categorised in
many ways. My choice of three categories puts together those aspects which
have a natural relationship between them whilst allowing sufficient distinction
to be of value. The embodied mode, for example, lies at the base of
mathematical thinking. It does not stay at a low level of sensori-motor operation
in the sense of the first stage of Piagetian development. It becomes more
sophisticated as the individual becomes more experienced, while remaining
linked, even distantly, to the perception and action typical in human mental
processing. A ‘straight line’, for instance, is sensed initially in an embodied
manner through perception and conception of a straight line given by a physical
drawing. However, an embodied conception of a straight line may become more
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subtly sophisticated to cover the idea that a line has length but no breadth,
which is a fundamental concept in Euclidean geometry. What matters here is
that the conception of a ‘straight line’ remains linked to a perceptual idea even
though experience endows it with more sophisticated verbal undertones.

The proceptual mode (beginning with Piaget’s concrete operational or
SOLO’s concrete symbolic) is based on symbolic manipulation found in
arithmetic, algebra and symbolic calculus. It could easily be subdivided, and
often is. Research by my colleagues and myself suggest that there are a range of
transitional difficulties that occur in moving through proceptual thinking to new
kinds of proceptual symbolism (figure 3).

The symbols in arithmetic are operational, that is there is an algorithm for
calculating the desired process. For instance, the symbol 3+2 is asking for the
process of adding 3 and 2, which can be carried out, for example, by starting at
3 and counting on two more. There are several subtle difficulties that occur in
handling broader number systems, such as integers (where adding a negative
number will now make the result smaller, contrary to all experience with
counting numbers) or fractions, with the difficulties of equivalence and the
arithmetic of fractions.

Algebra has a new kind of symbol, such as 3+2x, which is no longer
operational; the desired sum cannot be carried out until x is known, and so the
process of evaluation is only potential. Yet students are asked to manipulate
expressions that have processes that they cannot carry out. No wonder students
find the initial contact with algebra so confusing!

Other subtle difficulties occur in later algebraic developments. For instance,

calculus

arithmetic

algebra

(dynamic limit concept)

computational processes (arithmetic)
computational concepts (numbers)

potential processes (evaluating expressions)
manipulable concepts (expressions)

computational processes (rules)
computational concepts (formulas)

potentially infinite processes (limits)
arbitrarily small, close or large concepts

(numerical quantities)

[problematic meanings of negatives, fractions]

[problematic meaning of negative & fractional powers]

[problems with deriving rules for calculus]

Figure 3: Some different types of procept in mathematics (Tall et al, 2001)
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the meaning of x2  as two lots of x multiplied together is evident, but x1/2 has no
corresponding meaning. (How can we have ‘half a lot of x multiplied together?)

The introduction of the limit concept brings a procept whose calculation is
now potentially infinite, so that most students believe that such a phenomenon
‘goes on forever’, without every quite reaching the limiting value. Again this
provokes universal difficulties for students. It is with some relief that they find
the ‘rules of calculus’ being operational again, albeit with symbolic rather than
numerical input and output.

The development of number, algebra and limit are littered with cognitive
transitions that require considerable effort for learners and often act as
considerable barriers to progress. It is my belief therefore that it is more natural
to put all of these numeric and symbolic manipulations together and to
subdivide them into smaller categories wherever this is appropriate, taking into
account natural transitions that occur in sense-making in developing meaning
for symbolism in these branches of mathematics.

The final axiomatic category also includes a range of approaches. The earlier
modes of thought already have their own proof structures. The embodied mode
already supports thought experiments where one imagines a situation occurring
and thinks through the consequences. The proceptual mode allows a simple
form of proof by checking calculations, or using algebraic symbolism to
generalise ideas in arithmetic. In the axiomatic world, formal proof comes into
play, first in terms of local deductions of the form ‘if I know this, then I know
that.’ What distinguishes the formal mode is the use of formal definitions for
concepts from which deductions are made. The formal world again grows in
sophistication from local deductions based on definitions into the formulation
and construction of axiomatic systems such as those in group theory, analysis,
topology, etc. Even here there is a range of ways in which students can come to
terms with the formalism. Pinto (1998) distinguishes between ‘natural’ thinking
where the formalism is built by continual refinement of the concept image and
‘formal’ thinking which builds logically from definitions and formal
deductions. In Tall (2002), I take these ideas further to show how ‘natural’
thought experiments based on imagery may suggest possible theorems which
may then be deduced by ‘formal’ means. In the other direction, formal proof
can produce significant structure theorems that state that a given formal system
has certain structural properties; these can yield their own imagery which allows
natural thinking to speculate once more in terms of thought experiment.
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DIFFERING MODES OF OPERATION AND BELIEF

The embodied, proceptual and formal modes have differing ways of justifying
and proving which reveal them to operate as quite different worlds of
experience. Let us consider this in a simple example:

Example: The sum of the first n whole numbers is 1
2n(n + 1).

Proof 1: (embodied). Lay out rows of stones. Put 1 in the first row, 2 in
the second row, 3 in the third, and so on. The picture is shown in the
left hand part of figure 3. Now take an equal layout of pebbles, turn it
round and fit the two together as in the right-hand picture. It can be
seen that the two together make a rectangle size n by n+1, so there are
n(n+1) stones altogether, making 1

2n(n + 1) in the original shape. The
validity of this proof is in the visual picture.

n

n+1

1

2

3

n

stage 1: 1+2+3+ ... + n stage 2: two lots fitted together

Figure 4: The embodied proof that the sum of the first n whole numbers is 1
2n(n + 1)

Proof 2: (proceptual). Write out the sum
1+2+3+…n

backwards as
n+ … +3+2+1

and add the two together in order, pair by pair, to get
(1+n) + (2+n–1) + … + (n+1)

to get n lots of n+1, ie. n(n+1), so, again, the original sum is half this,
namely 1

2n(n + 1).

Proof 3: (axiomatic) By induction.

The embodied and proceptual proofs have clear human meaning, the first
translating naturally into the second. The induction proof, on the other hand,
often proves opaque to students, underlining the gap that occurs between the
first two worlds and the formal world.
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THE THREE DIFFERENT WORLDS OF THE CALCULUS

The term ‘calculus’ has its origins in the Latin word ‘calculus’ for ‘stone’,
which was used as a physical tool during a process of calculation. In this
context the theory of numbers has an underlying physical origin, for example in
the notion of ‘triangular numbers’ or ‘square numbers’ which can be
represented by triangular and square arrays of pebbles respectively. In the same
way, calculus has a real world context in which the objects of study involve the
rate of change of variable quantities (differentiation), the accumulation of
growth (integration) and the relationship between them (the Fundamental
Theorem).

The work of Newton and Leibniz moved us into a new realm by providing a
mechanical method for calculating rates of change and cumulative growth. Thus
calculus can be seen as operating in both a physical real-world sense, the source
of our perceptions of change and growth, and in a symbolic sense, through
problem-solving employing the algorithms of differentiation and integration. It
is therefore a combination of the embodied and proceptual modes of operation.

In the last century, with the growth of mathematical analysis the formal-
axiomatic mode of operation was developed in which numbers are no longer
represented only as points on a number line, but are elements of an axiomatic
structure, a complete ordered field. This gives a new formal-axiomatic
framework for the calculus as part of the broader theory of mathematical
analysis.

Traditional calculus teaching has focused on the graphical ideas of rate of
change and cumulative growth, and the symbolic manipulation of the rules of
calculus in differentiation and integration. The initial stages usually begin with
informal ideas of the limit concept in geometric, numeric and symbolic form. It
thus inhabits a combination of embodied and proceptual worlds, although the
embodied world aspects are largely represented by static pictures rather than
dynamic movement.

The arrival of the computer gives new possibilities: it has a graphical
interface which allows the user to interact in a physical way by pointing,
selecting and dragging objects onscreen to extend the embodied context of real-
world calculus. Symbol manipulators such as Mathematica, Maple and Derive
have the capacity to carry out the algorithms of the calculus on behalf of the
user. However, these applications have a largely symbolic interface, producing
graphic output on the screen, but with little embodied input. I contend that to
give the calculus a physical human meaning, we should take advantage of an
enactive interface which is now possible, and rethink the calculus to expand the
standard graphic and symbolic modes of thought to take advantage of the full
embodied mode on the one hand and to consider how this can lay the basis of a
formal mode of thought for those students who will benefit from further study.
Each mode brings its own viewpoint and its own mechanism for establishing
truth and we continue our quest by considering each of these in turn.
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DIFFERENT WARRANTS FOR TRUTH IN EACH WORLD

The three worlds of meaning have quite different ways of establishing truth.
The embodied world is a world of sensory meaning. Its warrant for truth is that
things behave predictably in an expected way.

The proceptual world is the familiar traditional world of calculus where
calculations can be made (both arithmetic and algebraic). A graph has a slope
(derivative) or an area (integral) because you can calculate it.

The axiomatic world is a world where explicit axioms are assumed to hold
and definitions are given formally in terms of quantified set-theoretic
statements. A function has derivative or integral because you can prove it.

 If a computer is used, then the software can be programmed in a manner
that supports these various modes. For instance, the Visual Calculus software
programmed by Teresinha Kawasaki enables a graph to be magnified and
moved under enactive control so that the user may zoom in to see the graph is
locally straight and move the window along the graph to feel the changing slope
of the graph (figure 5).

The embodied mode does not prove things are true in a mathematical sense,
but it has the potential of building meaning far beyond traditional symbolic
calculus. It is my belief that calculus software should be programmed to enable
the user to explore not just nice smooth graphs, but graphs with corners, or
more wrinkled graphs where the slope varies wildly. In this way an embodied
approach can give a meaningful foundation for the most subtle of ideas of
analysis. These ideas are currently omitted from most current calculus reform
courses, which focuses mainly on the workings of regular functions. I ask how
students can be expected to see the need for proof in a formal sense when they

Figure 5: Dragging the view-point along the graph to see the changing slope
of a locally straight graph
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have no experience of what can go wrong in a meaningful context. My method
allows students to see functions that are clearly nowhere locally straight, when
classically trained students have no mental image as to what it means for a
function to be non-differentiable.

AN EMBODIED APPROACH TO THE CALCULUS

An embodied approach to the calculus focuses on fundamental perceptual ideas
before introducing any symbolism. It is not an approach that begins with formal
ideas of limits, but with embodied ideas of graphical representations of
functions. Nor is it an approach based solely on real-world applications although
these are natural components of the total picture. It must encompass sensory
ideas of the mathematics as well as sensory ideas of the applications. Each real
world application involving say length, area, velocity, acceleration, density,
weight etc has specific sensory perceptions that are in addition to the ideas of
the calculus and these may cloud the underlying mathematics. For instance, if
we build on the idea that the slope of a time-distance graph is a velocity, and the
slope of a time-velocity graph is an acceleration, then we focus on the embodied
senses of distance, velocity and acceleration rather than on the simpler
underlying mathematics that each is obtained from the previous one as the slope
of its graph.

The central idea of an embodied approach to the calculus builds on
interaction with the physical picture of the graph of a function. It is important to
emphasise that these functions involve variables that are numbers. The slope of
such a graph is a variable number, the area under the graph is a number and
slopes and areas themselves have graphs that are numerical quantities. Thus we
may plot the graphs of the derivatives and ant-derivatives on the same axes if
we so desire. In this way we may, for example, study the graphs of 2 x and 3x to
see how they have the same shape as their slope functions and seek a number e
such that the slope of e x is again e x.

An embodied approach to the calculus is at its best when it links into the
related world of symbolism, with its numeric calculations and algebraic
manipulations to give the symbolic procedures of differentiation to calculate the
slope of a graph. The derivative of a function is again a function, and (if this
derivative is also locally straight) it can be differentiated again and again.

Where appropriate, I seek to motivate ideas in ways that can later be turned
into axiomatic proofs. However, I see the theory of calculus fundamentally
living in the two worlds of embodiment and proceptual symbolism.

In the remainder of this paper, I draw heavily on examples from my plenary
lecture to the Fifth Asian Technology Conference in Mathematics (Tall, 2000).
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COMPUTER ENVIRONMENTS FOR COGNITIVE DEVELOPMENT

Two concepts are useful in building an embodied approach to mathematics:

• a generic organiser is an environment (or microworld) which
enables the learner to manipulate examples and (if possible) non-
examples of a specific mathematical concept or a related system
of concepts. (Tall, 1989.)

• a cognitive root (Tall,1989) is a concept which is (potentially)
meaningful to the student at the time, yet contain the seeds of
cognitive expansion to formal definitions and later theoretical
development.

A cognitive root is usually an embodied concept. For instance, the notion of
local straightness is a cognitive root for differentiation. This was first
demonstrated in the program Magnify shown in figure 6 (Tall, 1985b), an early
pre-cursor of the much more enactive Visual Calculus software of Kawasaki.

Figure 6: magnifying a graph that looks less curved when magnified
and, highly magnified looks ‘locally straight’

The program Magnify is a generic organizer for the notion of local straightness.
However, unlike almost all approaches to the calculus, which deal only with
formulae for functions that are differentiable, this includes functions such as the
blancmange function (figure 7), which is nowhere locally straight, thus
fulfilling the need for a generic organizer to focus on non-examples as well as
examples.

The blancmange function bl(x) is the sum of saw-teeth:

s(x)= min(d(x), 1– d(x)), where d(x) = x–INTx is the decimal part of x,

sn(x)=s(2n-1x)/ 2n-1 ,

and the function itself is:

bl(x) = s1(x)+ s2(x)+ s3(x)+ …
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Figure 7: a graph which nowhere looks straight

If we consider the ‘nasty’ function:

n(x)=bl(1000x)/1000

then it is a tiny blancmange which is everywhere smaller than 1
1000. The two

graphs g(x) = sinx and f(x) = sinx + n(x) differ by less than 1
1000 and yet one is

locally straight everywhere and one is locally straight nowhere! (Figure 8.)

Figure 8. A ‘smooth-looking curve’ that magnifies ‘rough’.

This simple picture has an amazing consequence. If f(x) is any differentiable
function, then f(x)+n(x) is nowhere differentiable, but looks exactly the same at
one scale. The distinction only appears under higher magnification. Thus the
software reveals its own limitations. A function may look straight in a given
picture. What matters is that it must look straight at all magnifications. In this
sense the generic organiser Magnify contains within it the visible evidence of its
own limitations. It therefore has the potential to focus on the need for a more
sophisticated mathematical theory.



– 14 –

EMBODIED LOCAL STRAIGHTNESS

Having stated categorically that I think that the formal limit notion is an entirely
wrong place to begin the calculus (although it is precisely the right place to
begin an axiomatic development in analysis), it is necessary to explain in what
way a ‘locally straight; approach to the calculus should begin.

Using appropriate software, a range of experiences can be arranged which
lead to an embodied insight into calculus concepts. These include:

a) zoom in under enactive control to sense the lessening curvature and
establish local straightness by sensing it ‘happen’.

b) drag a magnification window along a locally straight graph to see its
changing slope.

c) explore ‘corners’ (with different left and right slopes) and more general
‘wrinkled’ curves to sense that not all graphs are locally straight.

d) use software to draw the slope function to establish visual relationship
between a locally straight function and its slope expressed symbolically.

e) Consider visual slope functions of sinx, cosx, and ‘explore’ the minus
sign that arises in the derivative of cosx, which is –sinx and is visibly the
graph of sinx reflected in the x-axis.

f) Explore 2x, 3x and vary the parameter k in kx to find a value of k such that
the slope of kx is again kx.

EMBODIED LOCAL STRAIGHTNESS
AND MATHEMATICAL LOCAL LINEARITY

There are great cognitive and mathematical differences between local
straightness and local linearity. ‘Local straightness’ is a primitive human
perception of the visual aspects of a graph. It has global implications as the
individual looks along the graph and sees the changes in gradient, so that the
gradient of the whole graph is seen as a global entity.

Local linearity is a symbolic linear approximation to the slope at a single
point on the graph, having a linear function approximating the graph at that
point. It is a mathematical formulation of slope, taken first as a limit at a point
x, and only then varying x  to give the formal derivative as a function. Local
straightness remains at an embodied level and links readily to visualising the
slope of a given graph. Local linearity focuses on the ‘best’ local linear
approximation expressed symbolically.

For instance, the derivative of cosx is seen to be equal to –sinx  in the
embodied mode because ‘it is the graph of sinx upside down’ (figure 9). This
does not mean that this is a proof in a formal sense. However, the symbolic
proof of the derivative by finding the limit of (cos(x+h)–cosx)/h as h tends to
zero is rarely convincing to students in my experience. In practice, it is based on
the use of trigonometric formulae which are not ‘proved’ symbolically at this
stage and on an ad hoc argument (usually presented visually) that sinx/x tends to
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1 as x tends to zero. I would contend that an embodied experience with meaning
is more appropriate at this point. The time for the more manipulative and formal
aspects can come at a later stage when they have more chance of making sense.

My own belief is that a locally straight approach is an option that is
appropriate for the widest spectrum of students. It is:

• an ‘embodied approach’ which can be supported by enactive
software to give it a human meaning.

• it can be linked directly to the usual numeric and graphic
derivatives.

• it fits exactly with the notion of local straightness, which can be
linked to local linearity (for those for whom it is important).

• it involves visual and symbolic ideas which can later be linked to
formal analysis in either standard, or non-standard, form.

LOCAL LINEARITY AND THE SOLUTION OF
DIFFERENTIAL EQUATIONS

As an example of the distinction between the embodied notion of local linearity
and the symbolic-proceptual notion of local straightness, consider the inverse
problem to the finding of a derivative. Mathematicians for many generations
have used the fundamental theorem of the calculus to declare that the inverse of
differentiation is integration. This is a conceptual blunder. The inverse of
finding the slope of a function is to be given the slope of a function and to be
asked how to find a function with this slope. The inverse of differentiation is
anti-differentiation: given the derivative, find the function. In traditional
calculus this is given in terms of linear differential equations in the form

dy

dx
= F (x,y).

Figure 9: The gradient of cosx (drawn with Blokland et al, 2000).
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In traditional symbolic calculus this is attacked by a rag-bag of specific
techniques suitable for a small number of types of differential equation. The
meaning is (usually) lost. But the embodied meaning is plain. It is this:

If I point my finger at any point (x,y) in the plane, then I can calculate
the slope of the solution curve at that point as m = F (x,y) and draw a
short line segment of gradient m through the point (x,y).

This is a perfect opportunity to design a generic organiser on the computer.
Simply write a piece of software so that when the mouse points at a point in the
plane, a short line segment of the appropriate gradient is drawn, and as the
mouse moves, the line segment moves, changing its gradient as it goes. As the
solution curve is locally straight—it has a slope given by the equation—this line
segment is part of the solution (at least, it approximates to part of a solution).
The software allows the
segment to be left in
position by clicking the
mouse.  Hence by
pointing and clicking,
then moving the line
segment until it fits with
the end of the curve
drawn so far,  an
approximate solution
curve can be constructed
by sight and hand-
movement—an
embodied link between a
first order differential
equation and its solution
(figure 10.)

CONTINUITY
Tall (1985a) showed how the notion of continuity can be illustrated for a real
function. All that is required is to stretch the graph much more horizontally than
vertically.  In figure 11 we see the blancmange function with a rectangle that is
tall and thin. This is stretched to give the picture in figure 12. It can be seen that
the graph ‘pulls flat’ and that further stretching will flatten it horizontally. The
translation from this embodied notion of continuity to the formal definition is
not very far. Imagine the graph is drawn in a window with (x0, f(x0) in the centre
of the picture, in the centre of a pixel height 2 . Suppose it ‘pulls flat”. Then the
graph lies in a horizontal row of pixels and if the window is now of width 2 ,
we have:

x x0 <  implies f (x) f (x0 ) <  [QED].

Figure 10: A generic organiser to build a solution of a first
order differential equation by hand, (Blokland et al, 2000).
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THE EMBODIED NOTION OF AREA

In the embodied world, the area under a continuous curve can be seen and
calculated approximately by covering the area with squares and counting them.
(Figure 13.)

a x

A(x)

y = f(x)

Figure 13: Measuring the area under a graph with a grid

The area from a to x under the graph is a function A(x) called the ‘area-so-far’
function. In the practical embodied world of physical measurement, by using
small enough squares, a numerical value of the area can be found to a degree of
accuracy limited only by the accuracy of drawing and measuring.

Just as the cognitive root of ‘local straightness’ can be used to lead to more
sophisticated theory, so the embodied notions of ‘area’ and ‘area-so-far’ can
support Riemann and even Lebesgue integration. The use of technology to draw
strips under graphs and calculate the numerical area is widely used. With a little
imagination, and well-planned software, it can be used to give insight into such
things as the sign of the area (taking positive and negative steps as well as
positive and negative ordinates) and to consider ideas such as how the notion of
continuity relates to the notion of integration. For instance, figure 14 shows the
area under sinx from 1 to 1.001 with the graph stretched horizontally. It shows
that the increase in area is approximately f(x) times the change in x. Thus the

Figure 11: The blancmange graph and a
rectangle to be stretched to fill the screen

Figure 12: The blancmange function
being stretched horizontally.
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ratio of change in area to change in x approximates to f(x), which gives insight
into the fundamental theorem of calculus that the rate of change of area is the
original function.

FORMALIZING THE EMBODIMENT OF
THE FUNDAMENTAL THEOREM OF CALCULUS

The embodied idea of continuity leads naturally to a formal proof of the
Fundamental Theorem. Let A(x) be the area under a continuous graph over a
closed interval [a,b] from a to a variable point x. In the embodied mode, the
area ‘exists’ because it can be seen and calculated as accurately as required.
Continuity means the graph ‘may be stretched horizontally to “look flat”.’
(Figure 15.) This means that:

Given an  > 0, and a drawing in which the value (x0 , f (x0 )) lies in the
centre of a practical line of thickness f (x0 ) ± , then a value  > 0 can
be found so that the graph over the interval from x0  to x0 +  lies
completely within the practical line.

Then (for –  < h  < ), the area A (x+h)–A(x) lies between (f(x)– )h and
(f(x)+ )h, so (for h  0),

A(x + h) A(x )

h
 lies between f(x)–  and f(x)+ .

For |h| < , we therefore have:

A(x + h) A(x)

h
< .

As  is arbitrary, this shows that the embodied idea of continuity leads to a
corresponding formal definition and to a formal proof of the Fundamental
Theorem of Calculus.

Figure 14: Area under sinx from 1 to 1.001
stretched horizontally

Figure 15: Towards the Fundamental
Theorem of Calculus
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FURTHER EMBODIED INSIGHT INTO FORMAL THEORY

I conclude this paper by showing a few visual examples of various sophisticated
concepts in mathematical analysis.

The blancmange function is contin-
uous (Tall, 1982), and therefore its area
function is differentiable. Figure16 shows
the numerical area function for the
blancmange and the gradient of the area
function. This looks like the original
graph. Of course it does, because the
derivative of the area is the original
function again.

 Another much more interesting
situation is to consider the ‘area’ under a
function which has a number of
discontinuities. The function x–int(x) is
discontinuous at each  integer and is
continuous everywhere else. The area function is continuous everywhere and is
also differentiable everywhere that the original function is continuous (figure
17). However, at the integer points, if the graph of the area function is
magnified, it can be seen to have a corner at each integer point, because here the
area graph has different left and right gradients (figure 18). If you look at the
change in the area under the function you may be able to see why this happens.

 It was an ambition of mine to draw functions such as f(x)=x for x rational,
f(x)=1–x for x irrational. The fact that this was impossible for numerical
calculations on a computer (which are all rational) did not deter me. In Tall
(1993), I found a method that enabled me to make such a model.

The Ancient Greeks used an algorithm to find rational approximations to any
(real) number x. It begins by finding the integer part n, and decimal part d:

x = n + d  (where 0  d < 1).

Figure 17: the area function for x–int(x) Figure 18: The area function magnified

Figure 16: the area function of the
blancmange and the derivative of this area

(from Tall, 1991b)
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If d=0, then x is a (rational) integer. If not, the subtle part is to note that its
reciprocal 1/d is greater than 1, so we can take the integer part again and write

1/d = n2 + d2 (where 0  d2 < 1).
By continuing this process, the equations can be unravelled to give closer and
closer rational approximations to any number x. For instance,

 = 3 + d (where d = 0.14159...)
1/d = 7.0626...

and so a good approximation to  is
 = 3 1

7  = 2 2
7 .

If the process is applied to a rational number such as 2 2
7 , then the remainder

eventually becomes zero:
2 2

7  = 3 + 1
7

1/( 1
7 ) = 7+0

and the process terminates.
The process gives a sequence of fractions, r1, r2, ... which tend to the real

number x. If x is rational, the sequence is eventually constant, equalling x
expressed in lowest terms. If x is irrational, it is easy to see that the numerators
and denominators of rn must grow without limit. (For if the denominators were
all less than an integer N , then the sequence N!rn would be a sequence of
integers tending to N!x, so the terms must eventually be a fixed integer,
implying N!x is an integer, contradicting the fact that x is irrational.)

This gives a method of distinguishing between rationals and irrationals:
Compute the continued fraction expansion of x. If the rational approximations have
denominators that grow without limit, then x is irrational, otherwise it is rational.

Working in the practical world of computers there are technical difficulties. The
process involves taking reciprocals; if d is small, then 1/d is huge. If d should be
zero, but errors make it tiny, then taking the reciprocal causes the method to
blow up. The practical way out is to cease when the process gives a decimal part
smaller than a specified error e, and check if the size of the denominator of the
approximating fraction is bigger than a specified (large) number K.

Using this idea, I formulated the following technical definition to simulate
the notions of rational and irrational in a finite computer world:

Definition: A real number x is said to be (e,K)-rational if, on computing the
continued fraction approximation to x, the first rational approximation within e of x
has denominator less than K, otherwise x is said to be (e,K)-irrational.

The pseudo-code, returning TRUE for pseudo-rationals and FALSE for pseudo-
irrationals, translates easily to most computer languages, is as follows:

DEFINITION rational(x,e,K)
r=x : a1=0 : b1=1 : a2=1 : b2=0
REPEAT: n=INTr : d=r–n : a=n*a2+a1 : b=n*b2+b1

IF d<>0 THEN r=1/d : a1=a2 : b1=b2 :a2=a : b2=b
UNTIL ABS(a/b–x)<e
IF b<K THEN return TRUE ELSE return FALSE
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Sensible values for e and K are, say, e =10–8, K  = 104 for single precision
arithmetic, or e =10–16, N = 108 for double precision.

Such an algorithm allows us to subdivide numbers into two disjoint sets
numerically, which I called ‘pseudo-rational’ and ‘pseudo-irrational’. In Tall
(1991) I programmed a routine plotting random points, which were mainly
‘pseudo irrational’ and a second routine that plotted mainly ‘pseudo-rationals’.

 Figure 19 shows pictures of the function which is x on the rationals and 1–x
on irrationals together with a graph for the area ‘under the graph’ from 0 to x.
This uses the mid-ordinate rule with a fixed with (rational) step. It encounters
mainly (pseudo-) rationals where f (x)=x, so the resulting area function
approximates to x2/2. When the area is calculated using a random step-length
and a random point in the strip to calculate the area, it encounters mainly
(pseudo-) irrationals where the function has values f(x) = 1–x. The area function
drawn in this case reflects the latter formula (figure 20). (Here I have drawn
several plots of the area curve. Because of the errors calculating pseudo-
rationals and irrationals, there are small discrepancies with the random area that
is slightly different each time.)

I used this software to discuss the area under such graphs (Tall, 1993).
Students who were not mathematics majors and who would normally not cope
very well in an analysis course were able to discuss this example intelligently,
noting that ‘a random decimal is highly unlikely to repeat, so random decimals
are almost certainly irrational’. This led to a highly interesting discussion on the
‘area’ under ‘peculiar’ graphs which offered subtle ideas that could move on to
Lesbegue integration. It shows how the mathematical mind can gain insights
from visuo-spatial ideas in areas where the formal theory would be far too
abstruse. But, for some of those who later do go on to the formal theory,
visualization can provide a powerful cognitive foundation.

Figure 19: The (pseudo-) rational area Figure 20 : The (pseudo-) irrational area
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REFLECTIONS
In a recent review of the use of technology in calculus, Tall, Smith and Piez

(in press) found that many projects (such as the Harvard Calculus and
ProjectCalc) based their ideas on the use of computer representations with
various graph programmes and symbol manipulators. However, as we saw
earlier, such curricula did not in general consider the underlying embodied ideas
of the type presented here. One might wonder why. In my plenary talk to the
International Congress of Mathematics Education in 1996 (Tall, 1998), I noted
that the sequence in which technology developed caused the pioneers to switch
successively to new facilities. The sequence included:

• Programming numerical algorithms (pre-1980),

• Graphics (early 1980s), eg using graph-plotting programs,

• Enactive control (1984), allowing interactive exploration (eg Cabri),

• Computer algebra systems (early 80s, generally available in the late 80s),

• Personal portable tools (1990s) (eg TI-92, PDAs, portables, iBooks
with wireless, etc),

• Multi-media (1990s),

• The World Wide Web (1990s).

Constant innovation caused new ideas to be implemented. Mathematicians
naturally wanted the latest and “best” tools. Thus new tools took over before the
use of earlier tools had been fully worked out. The fledgling use of numeric
programming and graphic visualisation was overtaken by the power of
computer algebra systems at a time when the power of an enactive interface was
still to be fully understood. Now we have had time for reflection I suggest that
an embodied approach provides a particularly human foundation for ideas in
calculus and analysis that can be a study in itself but can lead on naturally to
proceptual-symbolic calculus and formal-axiomatic analysis.

SUMMARY

In this presentation I have described three distinct worlds of human operation,
the embodied mode based on human perception and sensation, enhanced by
verbal theorising and communication, the proceptual-symbolic world of
arithmetic, algebra and functions in calculus, and the formal world of
mathematical analysis. I have made the case that a combination of embodied
and proceptual operation is appropriate for the calculus and the formal mode
can be postponed to a later study of analysis. However, I have also been able to
show that extremely deep ideas in mathematical analysis have a cognitive
foundation in the embodied mode in a manner which is meaningful to a much
broader spectrum of students.

I reported how the use of local straightness and visual ideas of area can be
cognitive roots that are foundational in building an embodied understanding of
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the calculus, but have the potential to grow naturally into the formal theory of
analysis.

In particular, I have presented arguments in support of the following
hypotheses:

• Local straightness is an embodied foundation (cognitive root) for
the calculus.

• The local slope of the graph as rate of change is an embodied
foundation (cognitive root) for the slope function (derivative).

• Finding a graph given its slope is an embodied foundation
(cognitive root) for differential equations. This is the true inverse
operation to differentiation.

• The notion of area under a graph is an embodied notion that can
be calculated to suitable accuracy by embodied methods.

• Local flatness (stretching a graph horizontally) is a cognitive
foundation for continuity.

• The embodied notion of continuity leads naturally to both an
embodied idea and a formal proof of the fundamental theorem of
calculus showing that the derivative of the area-so-far function is
the original function.

In short, an embodied approach to the notion of change and rate-of-change of
quantities represented by graphs has the necessary conceptual power to lead to a
potentially meaningful theory of:

proceptual symbolism in calculus

and

axiomatic proof in analysis.
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